banner



Fläche Eines Gleichschenkligen Dreiecks Berechnen

Wenn es um Dreiecke als geometrische Objekte geht, musst du dir immer klar machen, welche Eigenschaften verschiedene Dreiecke überhaupt erst besitzen. Denn eine Sache ist wohl klar: Nicht alle Dreiecke sind gleich!

In diesem Artikel erfährst du, was das besondere an einem gleichschenkligen Dreieck ist und welche wichtigen Formeln du dir unbedingt merken musst!

Vorher wiederholen wir aber nochmal was ein Dreieck überhaupt ist!

Wiederholung – Grundlagen des Dreiecks

Ein Dreieck ist eine geschlossene Figur in der Geometrie, die drei Seiten, drei Winkel und drei Ecken aufweist und daher auch den Namen Dreieck trägt.

In den folgenden Unterpunkten erfährst du alles Wissenswerte über ein Dreieck, wie beispielsweise den verschiedenen Arten, dessen Eigenschaften und wie homo dieses korrekt beschriftet.

Allgemeines Dreieck

Damit du in Zukunft blitzschnell erkennen kannst, ob es sich bei einer Figur um ein Dreieck handelt oder nicht, zeigen wir dir in Abbildung 1 wie ein allgemeines Dreieck aussieht.

Gleichschenkliges Dreieck, Allgemeines Dreieck, StudySmarter

Abbildung ane: Allgemeines Dreieck

Wenn du bei zukünftigen Hausübungen ein Dreieck zeichnen musst, dann halte dich bei der Beschriftung unbedingt an diese Regeln:

  • Dice Eckpunkte werden entgegen dem Gegenuhrzeigersinn mit Großbuchstaben (beginnend bei A in der linken Ecke) beschriftet.

  • Die Seiten des Dreiecks werden wie ihr gegenüberliegender Eckpunkt bezeichnet, jedoch als Kleinbuchstaben.

    • Die Seite a befindet sich somit gegenüber vom Eckpunkt A.

  • Die Winkel werden, wie die Eckpunkte, entgegen dem Gegenuhrzeigersinn beschriftet, jedoch mit griechischen Buchstaben aus dem griechischen Alphabet, beginnend bei Alpha. Das heißt der Winkel Alpha ist genau dort, wo der Eckpunkt A ist.

Hier findest du eine kurze Übersicht über die Zusammenhänge der Bezeichnung der Eckpunkte, der Seiten und deren Winkel:

Eckpunkte

Winkel

Seiten

A

α

a

B

β

b

C

γ

c

Die drei Winkel ergeben zusammen im Dreieck immer eine Summe von 180°. Dies wird auch als Winkelsumme bezeichnet.

Ein Dreieck kann verschiedenste Seitenlängen oder Größen der Winkel aufweisen, was auch bedeutet, dass diese immer anders aussehen und verschiedene Eigenschaften haben können. Deshalb unterscheidet man dice folgenden sechs Dreiecksarten, um einen besseren Überblick schaffen zu können.

Dreiecksarten

Die folgende Übersicht wird dir bestimmt helfen in Zukunft jedes Dreieck seiner Art perfekt zuordnen zu können. Dreiecke werden nach zwei verschiedenen Merkmalen kategorisiert:

  • Der Seitenlänge
  • Dem größten Winkel

Schauen wir uns dice verschiedenen Dreiecke einmal an, die es so gibt.

Dreiecksarten nach Seitenlänge

Gleichschenkliges Dreieck Allgemeines Dreieck StudySmarter Abbildung ii: Allgemeines Dreieck

Gleichschenkliges Dreieck Gleichseitiges Dreieck StudySmarter Abbildung 3: Gleichseitiges Dreieck

Gleichschenkliges Dreieck Gleichschenkliges Dreieck StudySmarter

Abbildung 4: Gleichschenkliges Dreieck

Wenn mehrere Seitenlängen mit dem gleichen Buchstaben beschriftet werden, dann handelt es sich hierbei um gleich lange Seiten. Dies ist ein schneller Weg, um herauszufinden, wie viele Seiten eines Dreiecks gleich lang sind.

Dreiecksarten nach Winkel

Gleichschenkliges Dreieck Spitzwinkliges Dreieck StudySmarter Abbildung v: Spitzwinkliges

Gleichschenkliges Dreieck Rechtwinkliges Dreieck StudySmarter Abbildung 6: Rechtwinkliges

Gleichschenkliges Dreieck Stumpfwinkliges Dreieck StudySmarter Abbildung vii: Stumpfwinkliges

Dreieck

Diese Dreiecke werden nach ihren größten Winkeln benannt. Mithilfe folgender Übersicht, kannst du schnell erkennen, um welche Art von Winkel es sich handelt und warum sie and so benannt sind.

  • Spitzer Winkel

    • Unter diese Kategorie fallen alle Winkel, welche kleiner als ninety° sind. In einem spitzwinkligen Dreieck sind demnach alle Winkel kleiner als ninety°.

  • Rechter Winkel

    • Einen rechten Winkel erkennst du daran, dass hierbei zwei Geraden senkrecht zueinander stehen und der Winkel genau 90° groß ist. Ein rechtwinkliges Dreieck besitzt daher einen rechten Winkel.

  • Stumpfer Winkel

    • Unter diese Kategorie fallen alle Winkel, welche größer als 90° sind. Das stumpfwinklige Dreieck chapeau demnach einen Winkel, der größer ist als 90°.

Übrigens: Die Größe eines Winkels wird in Grad angegeben und kann mit einem Geodreieck bzw. Winkelmesser gemessen werden. Je größer der Winkel, umso größer die "Öffnung" des Winkels.

Da du nun sicherlich schon ganz neugierig darauf wartest, was ein gleichschenkliges Dreieck besonders macht und wie homo Kennzahlen wie Höhe, Fläche oder Umfang berechnet, lassen wir dich nicht länger damit warten.

Gleichschenkliges Dreieck – Eigenschaften

Ein gleichschenkliges Dreieck erkennt man daran, dass zwei seiner Seiten, auch Schenkel genannt, gleich lang und zwei seiner Winkel gleich groß sind.

Ein gleichschenkliges Dreieck besitzt zwei gleich lange Seiten (Schenkel) und zwei gleich große Winkel.

Welche Seiten gleich lang sind, spielt dabei keine Rolle. In der folgenden Abbildung 8 siehst du ein Dreieck mit gleichen Seitenlängen von Seite a und b und damit gleiche Winkel bei Alpha und Beta .

Gleichschenkliges Dreieck Gleichschenkliges Dreieck StudySmarter Abbildung 8:Gleichschenkliges Dreieck

In den nächsten drei Abschnitten werden wir zuerst gemeinsam lernen, wie man ein gleichschenkliges Dreieck konstruiert, danach werden wir alle visuellen Eigenschaften des gleichschenkliges Dreiecks genauestens untersuchen und im Anschluss daran werden wir uns auf die Berechnungen der Kennzahlen Fläche, Umfang und Höhe stürzen.

Konstruktion eines gleichschenkligen Dreiecks

Um ein gleichschenkliges Dreieck konstruieren zu können, brauchst du nicht mehr als ein Lineal, einen Bleistift und ein Blatt Papier.

Zeichne als ersten Schritt eine beliebig lange Strecke auf das Blatt Papier und markiere dir den Mittelpunkt dieser Strecke.

Als Nächstes zeichnest du eine beliebig lange Senkrechte, likewise eine Strecke, welche im xc° Winkel zu deiner Strecke steht, vom gekennzeichneten Mittelpunkt nach oben.

Als letztes musst du lediglich noch den Endpunkt deiner Senkrechte mit den Eckpunkten der ursprünglichen Strecke verbinden, und siehe da, das gleichschenklige Dreieck ist vollendet.

Um dies besser verstehen zu können, haben wir dir eine Schritt für Schritt Anleitung zusammengestellt.

Gleichschenkliges Dreieck Konstruktion Gleichschenkliges Dreieck StudySmarter Abbildung 9: Schritt 1

Gleichschenkliges Dreieck Konstruktion gleichschenkliges Dreieck StudySmarter Abbildung x: Schritt 2

Gleichschenkliges Dreieck Konstruktion gleichschenkliges Dreieck StudySmarter Abbildung 11: Schritt 3

Verwende hierfür ein kariertes Blatt, denn dadurch kannst du lediglich den Kästchenrändern nachfahren, ohne im zweiten Schritt einen 90° Winkel messen zu müssen.

Eigenschaften und Größen eines gleichschenkligen Dreiecks

Lass uns nun gemeinsam die verschiedenen Eigenschaften des gleichschenkligen Dreiecks genauer unter die Lupe nehmen.

Die Seiten

Unter den Seiten versteht man jene Linien, welche dice Figur begrenzen. Verwende für deren Berechnung folgende Formeln:

Die Grundseite beziehungsweise Basis c des gleichschenkligen Dreiecks berechnet sich durch:

Gleichschenkliges Dreieck Formel Basis StudySmarter

Die beiden Schenkel a des gleichschenkligen Dreiecks berechnen sich durch:

Gleichschenkliges Dreieck Formel Schenkel StudySmarter

Gleichschenkliges Dreieck Formel Schenkel StudySmarter

Vergleicht human being das gleichschenklige Dreieck mit dem allgemeinen Dreieck, fällt auf, dass im gleichschenkligen Dreieck die beiden Schenkel, also zwei der drei Seiten gleich lang sind.

Da wir bereits geklärt haben, dass jeder Kleinbuchstabe im Dreieck stellvertretend für einen bestimmten Wert steht, können wir besides beide Schenkel mit dem selben Buchstaben versehen, im Normalfall mit dem Kleinbuchstaben a, wie man in Abbildung thirteen erkennen kann.

Gleichschenkliges Dreieck Allgemeines Dreieck StudySmarter Abbildung 12: Allgemeines Dreieck

Gleichschenkliges Dreieck Gleichschenkliges Dreieck StudySmarter Abbildung 13: Gleichschenkliges Dreieck

Die Winkel

Ein Winkel ist ein Teil der Ebene, welcher von zwei sich kreuzenden Strahlen begrenzt wird.

Im gleichschenkligen Dreieck sind immer zwei seiner Winkel gleich groß.

Wenn für die Seiten a = b golden, dann golden für dice Winkel:

Gleichschenkliges Dreieck Formel Winkel StudySmarter

Gleichschenkliges Dreieck Formel Winkel StudySmarter

Gleichschenkliges Dreieck Formel Winkel StudySmarter

In der Grafik 14 kannst du dir die Winkel noch einmal ansehen.

Gleichschenkliges Dreieck Gleichschenkliges Dreieck StudySmarter Abbildung 14: Gleichschenkliges Dreieck

Der "Arcsin" und "Arccos" sind sogenannte Umkehrfunktionen. Das bedeutet, sie ordnen einem Verhältnis einen Winkel zu. Du findest diese Funktion auf deinem Taschenrechner! Einfach eingeben und ausrechnen

Die Höhe

Unter der Höhe h versteht human being in einem Dreieck eine Senkrechte auf die Grundlinie, welche zum gegenüberliegenden Eckpunkt verläuft. Für die Höhe gilt:

Gleichschenkliges Dreieck Formel Höhe StudySmarter

Gleichschenkliges Dreieck Formel Höhe StudySmarter

In der Abbildung 15 sind alle Höhen mit eingezeichnet.

Gleichschenkliges Dreieck Die Höhen StudySmarter Abbildung xv: Höhen im gleichschenkligen Dreieck

Du fragst dich bestimmt, warum wir überhaupt Höhen benötigen. Sehen wir uns dazu ein Alltagsbeispiel an.

Aufgabe

Stell dir ganz einfach einen Sachverhalt aus dem alltäglichen Leben vor. Dein Vater behauptet, dass du es nicht schaffst, die Höhe der stehenden Leiter genau zu berechnen, wenn er dir sagt, dass die Leiter half-dozen Meter lang ist und die beiden Enden der Leiter 2 Meter voneinander entfernt sind. Solltest du dies schaffen, erhältst du 10 €.

Gleichschenkliges Dreieck Höhenbeispiel StudySmarter Abbildung 16: Leiter

Ohne auch nur kurz zu zögern, merkst du, dass diese Leiter dice Grade eines gleichschenkligen Dreiecks hat. Zum Glück erinnerst du dich noch an die spannenden Geometriestunden und kannst noch alle gelernten Formeln des Dreiecks auswendig, unter anderem, wie man die Höhe berechnet.

Lösung

Um ein Rechnungsbeispiel in der Geometrie lösen zu können, notieren wir uns alle in der Angabe aufgeführten Werte und fertigen uns eine Skizze ähnlich der Abbildung 17 des Sachverhalts an.

Die Seitenlänge der Leiter von half dozen m bezeichnen wir mit a, den 2 Meter – Abstand der zwei Fußenden mit c und die auszurechnende Höhe mit einem kleinen h.

c = ii thousand a = 6 k = ? m

Abbildung 17: Leiter als gleichschenkliges Dreieck

Sofort kannst du dich an dice spannenden Geometrie Stunden erinnern und schreibst dice Höhenformel im gleichschenkligen Dreieck nieder, welche wie folgt lautet:

Als Nächstes setzt du in der Formel anstelle des Buchstabens c die 2 Meter ein und anstelle des Buchstabens a die angegebenen 6 Meter. Versuche nun die Höhe zu berechnen, indem du dice gesamte Formel in den Taschenrechner eingibst.

Dein Vater ist sprachlos und voller Stolz übergibt er dir die versprochenen 10 €.

Es gibt für dice Höhen eine andere Formel als für dice Höhe .

Möchtest du hingegen die Höhe auf einer der beiden gleichlangen Seiten, den Schenkeln a ausrechnen, musst du folgende Formel anwenden. Möchtest du wissen, was human being unter der Höhe versteht, dann sie dir die Abbildung 15 an.

Die Symmetrie

Unter dem Begriff Symmetrie versteht human being, dass sich eine Figur an einem bestimmten Punkt oder einer Linie spiegelt. Eine solche Linie wird auch als Symmetrieachse bezeichnet.

Gleichschenkliges Dreieck Die Symmetrie StudySmarter Abbildung xviii: Symmetrie eines gleichschenkligen Dreiecks

Wie man erkennen kann, gibt es nur eine Linie im gleichschenkligen Dreieck, an welchem dieses gespiegelt wird bzw. welches eine Symmetrieachse darstellt. Das gleichschenklige Dreieck hat also immer genau eine Symmetrieachse, nämlich die Höhe selbst.

Die Seitenhalbierende

Die Seitenhalbierende ist dice Strecke vom Mittelpunk einer Seite zur gegenüberliegenden Ecke. Der Schnittpunkt dieser stellt den Schwerpunkt des Dreiecks dar.

Wie du in der nachfolgenden Abbildung 19 erkennen kannst, gibt im gleichschenkligen Dreieck wieder drei Seitenhalbierende.

Gleichschenkliges Dreieck Seitenhalbierende StudySmarter Abbildung 19: Seitenhalbierende im gleichschenkligen Dreieck

Sie Seitenhalbierende werden immer mit einem "S" gefolgt von der Bezeichnung der jeweiligen Seite im Index beschriftet.

Die Winkelhalbierende

Unter dem Begriff der Winkelhalbierenden versteht man einen Strahl, welcher in den Eckpunkten entspringt und den Winkel in zwei gleich große Teile teilt. Der Schnittpunkt der Winkelhalbierenden ergibt der Mittelpunkt des Inkreises.

Gleichschenkliges Dreieck Der Inkreis StudySmarter

Abbildung xx: Winkelhalbierende im gleichschenkligen Dreieck inklusive Inkreis

Sie Winkelhalbierenden werden immer mit einem "Westward" gefolgt von der Bezeichnung des jeweiligen Winkels im Index beschriftet.

Der Umkreis

Der Umkreis stellt einen Kreis dar, welcher dice Figur umschließt und dabei alle Eckpunkte berührt.

Gleichschenkliges Dreieck Formel Umkreis StudySmarter

In der Abbildung 21 ist der Umkreis des gleichschenkligen Dreiecks eingezeichnet.

Gleichschenkliges Dreieck Umkreis StudySmarter

Abbildung 21: Umkreis im gleichschenkligen Dreieck

Verwende zum Zeichnen ein kariertes Rechenblatt, denn dadurch stellst du sicher, dass der Radius des Umkreises von Spitze zu Mittelpunkt effektiv eine gerade Linie darstellt.

Der Inkreis

Der Inkreis ist der größtmögliche Kreis innerhalb der Figur, welcher alle Seiten der Figur berührt.

Gleichschenkliges Dreieck Formel Inkreis StudySmarter

Um den Inkreis einzeichnen zu können, benötigt man den Radius dessen, welcher mithilfe der obigen Formeln berechnet werden kann. Du kannst den Inkreis ebenfalls durch Einzeichnen des Mittelpunkts ziehen.

Gleichschenkliges Dreieck Der Inkreis StudySmarter Abbildung 22: Inkreis im gleichschenkligen Dreieck

Die Fläche

Eine Fläche gibt an, wie groß etwas in der zweidimensionalen Ebene ist. Dadurch kann bei einem Vergleich zweier Figuren festgestellt werden, welche größer ist. Für die Berechnung der Fläche des gleichschenkligen Dreiecks gibt es folgende Formeln.

Der Flächeninhalt A eines gleichschenkligen Dreiecks berechnet sich durch:

Gleichschenkliges Dreieck Formel Flächeninhalt StudySmarter

Gleichschenkliges Dreieck Die Fläche StudySmarter

Die in dieser Abbildung hellblau markierte Größe, auch Fläche genannt, hilft dir dabei, mehrere geometrische Figuren auf ihre Größe vergleichen kannst. Wie du in Abbildung 23 erkennen kannst, ist das Rechteck, also auch seine Fläche, deutlich größer als das gleichschenklige Dreieck.

Würdest du die Fläche beider Figuren berechnen, würdest du diese noch genauer miteinander vergleichen können. Übrigens, die Fläche wird immer mit einem großen A markiert.

Um bei Dreiecken allgemein die Fläche ausrechnen zu können, benötigt man meistens die senkrechte Linie auf die Grundlinie, auch Höhe genannt. Wenn wir nun die Grundlinie bzw. die Seite c mit der Höhe multiplizieren, also genau wie uns die erste Formel vorschreibt, erhalten wir die in Abbildung 24 dargestellte Figur.

Gleichschenkliges Dreieck Fläche StudySmarter

Abbildung 24: Fläche Dreieck vs. Rechteck

Wie man erkennen kann, erhält man indem human c ⋅ rechnet ein Rechteck, welches die Figur umschließt. Bei genauerem Hinsehen merkt man, dass das Rechteck genau doppelt and so groß ist wie das Dreieck. Dies bedeutet folglich, dass dice Formel für die Fläche jeder Dreiecksart wie folgt lautet:

Sollte die Höhe im gleichschenkligen Dreieck nicht gegeben sein, gibt es folgende zwei Alternativformeln, um die Fläche zu berechnen.

Gleichschenkliges Dreieck Gleichschenkliges Dreieck Flächeninhalt StudySmarter

Am Ende dieses Beitrages findest du Übungsaufgaben, bei welchen wir unser Wissen zu Umfang und Fläche vertiefen werden, also bleib dran.

Der Umfang

Unter dem Umfang versteht man dice Summe aller Seitenlängen, welche die Figur begrenzen. Somit lautet dice Formel für dice Berechnung des Umfangs im gleichschenkligen Dreieck:

Gleichschenkliges Dreieck Formel Umfang StudySmarter

Den Umfang benötigst du im täglichen Leben öfter als du vielleicht denkst. Stell dir vor du musst deine Wiese einzäunen und möchtest wissen, wie viel Meter Zaun du insgesamt benötigst. Genau hier kommt der Umfang ins Spiel.

Der Umfang wird immer mit einem großen U gekennzeichnet.

Gleichschenkliges Dreieck – Übungsaufgaben

Aufgabe 1

Folgende Seiten eines gleichschenkligen Dreiecks sind gegeben:

c = vii cm

a = viii cm

= 5 cm

Berechne den Umfang und dice Fläche!

Lösung

Gleichschenkliges Dreieck Skizze StudySmarter Abbildung 25: Skizze

Berechnung des Umfangs

Um den Umfang des Dreiecks auszurechnen, bedienen wir uns der Formel U = c + 2 ⋅ a, wir zählen likewise alle Seitenlinien, welche die Figur begrenzen, zusammen.

Auf unser Beispiel bezogen sieht dies wie folgt aus:

Somit beträgt der Umfang der Figur 23 cm.

Berechnung der Fläche

Da in unserem Beispiel die Höhe auf die Seite c bereits einen Wert aufweist, können wir die Formel

verwenden.

Auf unser Beispiel bezogen sieht dies wie folgt aus:

Somit beträgt die Fläche des Dreiecks 17,5 cm².

Beachte, dass dice Einheit der Fläche immer mit hoch " two " versehen wird, da wir uns nun im Zweidimensionalen befinden.

Aufgabe two

Folgende Seiten eines gleichschenkligen Dreiecks sind gegeben:

c = 10 cm

a = 12 cm

Berechne den Umfang und dice Fläche!

Lösung

Gleichschenkliges Dreieck Skizze StudySmarter Abbildung 26: Skizze

Berechnung des Umfangs

Um den Umfang des Dreiecks auszurechnen, bedienen wir uns der Formel U = c + 2 ⋅ a, wir zählen as well alle Seitenlinien, welche dice Figur begrenzen, zusammen.

Auf unser Beispiel bezogen sieht dies wie folgt aus:

Der Umfang der Figur beträgt also 34 cm.

Berechnung der Fläche

Wie wir in diesem Beispiel feststellen, ist die Höhe nicht Teil der Angabe. Deshalb müssen wir uns dice Alternativformel für dice Fläche im gleichschenkligen Dreieck zur Hilfe nehmen, welche lautet.

Auf unser Beispiel bezogen sieht dies wie folgt aus:

Gleichschenkliges Dreieck - Das Wichtigste

Source: https://www.studysmarter.de/schule/mathe/geometrie/gleichschenkliges-dreieck/

Posted by: haywarddiany1945.blogspot.com

0 Response to "Fläche Eines Gleichschenkligen Dreiecks Berechnen"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel